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Abstract

Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and
accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their
significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched
secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs
perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging.
We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications
of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and
might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings
of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.
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Introduction
The skin is our largest organ by weight and extent.
It not only protects us from environment factors, but
also synthesizes, processes, and metabolizes structural
biomolecules such as lipid, protein, and glycan [1]. As a
multifaceted organ, the skin also has sensory function and
exerts pivotal role in esthetic appearance.
Skin aging is a culmination of intrinsic and extrinsic

elements, which result in decreased structural integrity
and disruption of normal physiological function. Extrin-
sic factors such as solar radiation, cigarette [2], or other
pollution factors could induce skin aging. Among them,
exposure to UV (long wavelength ultraviolet radiations
(UVA) and medium wavelength ultraviolet radiations
(UVB) exposure) radiation (UVR) is the major source of
extrinsic skin aging, which is also known as photoaging.
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Photoaging accounts for nearly 80% of facial aging [3].
It is characterized by fine wrinkles, dryness, laxity, rough
texture, decreased elasticity, impaired wound healing, and
benign and malignant growths [4–7]. It also exaggerates
or accelerates the destruction of physiologic structure
and the loss of various protective capacities, remaining
an unsolved problem worldwide. In daily life, the condi-
tion of the skin is an important element used to estimate
people’s age and health [8].With the development of mod-
ern society and increasing life expectancy, maintaining a
youthful and vigorous appearance is highly desired, which
has facilitated the dramatic growth of the cosmeceutical
industry.
Plant extracts [9], antioxidants [10], growth factors and

cytokines [11], and stem cells [12] can be used to treat
photoaging. Recently, stem cell therapy has attracted great
attention because it can improve the regeneration abil-
ity of various tissues [12–14]. It is reported that stem
cells and their derivatives are able to ameliorate skin
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conditions to some extent [15]. People are quite interested
in the application of adipose-derived stem cells (ADSCs)
in fields of dermatological and esthetic medicine, because
they can be isolated and expanded easily and have clear
multi-lineage differentiation [16–18]. Furthermore, it is
reported that ADSCs can synthesize and secrete a lot of
biologically active substances, mainly including antiox-
idants and cytokines that can be extracted and stored
safely for a long time [19]. There are several reports in the
past illustrated that ADSCs and their secretome can treat
photoaging both in vivo and in vitro [20–22].
ADSCs improve conditions of photoaged skin, but

their anti-photoaging mechanism is still elusive. The
mechanism of ADSCs contributing to inflammation,
wound healing, cancer has already been reviewed [23–
25]. ADSCs against photoagingmay share samemolecular
interactions and pathways with them because photoag-
ing is related to inflammation, is similar to skin wound
progress [26] and may result in skin cancer. This arti-
cle reviews the mechanisms by which skin aging pre-
vails following exposure to UV radiation as well as the
recent research developments on the anti-photoaging
effects of ADSCs and ADSC secretome. An overview of
established and emerging treatment capacity of ADSCs
and ADSC secretome, which have been proven or at
least have demonstrated potential to inhibit or recupe-

rate the unwanted clinical manifestations of photoaging,
will be explored. Current research has come up with
many new fascinating approaches to modify ADSCs or
combine them with other materials to improve their treat-
ing ability. These novel ideas will be rendered in the
manuscript(Table 1).

Molecular, cellular, and histological alternation of
skin in photoaging
The aged condition of photoaged skin is induced by
molecular, cellular, and histological alternation and dam-
age to the skin structure. UVR accelerates skin aging by
causing direct and indirect damage to multiple skin struc-
tures. The simplified diagram of the general model of
UV-induced skin aging is shown in Fig. 1.

Direct damage induced by UVB
Direct damage is mainly caused by UVB. A considerate
part of UVB is absorbed in the stratum corneum, and the
rest part of UVB is absorbed in epidermal cells [27], induc-
ing biological alternation in DNA, RNA, protein. DNA
alternation is the most crucial one because accumulations
of DNA damage can cause cell senescence and apoptosis.
What is more, DNA alternation can damage the apop-
totic capacity of skin cells and increase the possibility of
malignancies [28].

Table 1 Different preconditionings of ADSCs and their functions

Precondition Capacities compared with ADSCs alone or
untreated

Reference

CO2 laser combination Further promote the activation of dermal fibroblast [21]

GARP silencing Increase their activation of TGF-β which augment the
levels of mtROS

[30]

Nrf2 overexpressing Promoted granulation tissue formation, angiogene-
sis, increased the expression of growth factor and
decreased proteins related to inflammation and oxi-
dation

[31]

HIF1α overexpressing Decrease oxidative stress and DNA damage [32]

H2O2 treated Reduce apoptosis, more skin flap survival area [33]

VEGF overexpressing Inhibit senescence by downregulating SA-β-Gal,
recover UV-induced skin injury

[34]

Combined with nanofat Ablate wrinkles [35]

Transfected with miR-146a Angiogenic and anti-inflammatory abilities [36]

Combined with HA gel Ablate wrinkles [37]

Seeded onto collagen
scaffolds

Increase dermal thickness and increase ECM [38]

Combined with fat graft Ablate wrinkles, promote collagen synthesis and neo-
vascularization

[39]

LLL preconditioning Increase growth factors secretion, increase dermal
thickness

[40]

Engineered to express IFN-
β and combined with cis-
platin

Migrate to tumor sites and inhibit the growth of
melanoma

[41]
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Fig. 1 UV-induced skin aging model

Reactive oxygen species (ROS)-related indirect damage
UVR can also cause physiological damage and accelerate
skin aging indirectly via endogenous or exogenous pho-
tosensitizers that absorb solar radiations. The progress
generates free radicals and ROS that induce skin inflam-
mation. The inflammation progress can produce ROS
by phagocytic cells and polynuclear lymphocytes [29].
Besides, inflammatory progress and ROS induce oxidative
damage to DNA, cellular proteins, lipids, and carbohy-
drates [42], which in turn leads to more ROS production,
resulting in a negative feedback loop [43]. Lipids are
important targets of ROS and ROS can react with them in
the cellular membrane to produce more reactive oxygen
intermediates [44]. In addition, damage to the membrane
lipids can induce structural damage in cell, cellular com-
ponents leakage and eventually cell death [42].
Besides, ROS can cause indirect damage to DNA by

oxidation products. For example, singlet oxygen, as the
product of ROS, can turn guanine into 8-oxoguanine [45].
Low level of ROS can lead to mutation, medium levels
can induce cell cycle arrest, and high levels can result
in apoptosis and cell death [46]. UVR can also acceler-
ate telomere shortening and lead to activation of p53. P53
is a tumor suppressor protein that can induce cell cycle
arrest and apoptosis [47]. The apoptosis of stem cells in

the basal layer induced by UVR is suggested to cause epi-
dermal atrophy, slow wound healing, and depigmented
pseudoscars [48]. On the other hand, some studies illus-
trated that UV-induced cell apoptosis exerts a protective
function in UV injury [49–51]. After acute DNA damage,
fibroblasts are more likely to undergo senescence rather
than apoptosis and the dermis of photoaged skin does
contain senescent fibroblasts that express senescence-
associated β -galactosidase(SA-β- Gal) positivity [52].
Senescence reduces cell metabolic activity. Thus, the syn-
thesis of elastic fibers and collagen fibers in the dermis is
reduced. It finally results in weakened elasticity, and wrin-
kles of the skin [6, 53]. The greater melanin produced by
senescent melanocytes could be related to the permanent
“tan” noted in photoaged skin of people with darker com-
plexions [54]. However, the molecular details associated
with freckling, lentigines, and other pigment alternations
of photoaged skin remain elusive [48].
Nevertheless, there are antioxidants in our body to

maintain the oxygen homeostasis. Glutathione peroxi-
dase (GPx) is the most essential antioxidant enzymes that
remove free radicals. GPx can facilitate a reaction with
the thiol-group of glutathione to eliminate singlet oxygen,
hydrogen peroxide, and other peroxides [55]. Superoxide
dismutase (SOD) and catalase can also remove superoxide
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radicals or hydrogen peroxide. However, the photoaged
skin is reported to have reduced levels of natural enzy-
matic and non-enzymatic antioxidants [56], together with
increased neutrophil infiltration and inflammation [57].

Extracellular matrix(ECM) degradation
Lots of damage happens in the connective tissue, which is
also known as the dermal ECM. Collagen, elastin, and gly-
cosaminoglycans (GAGs) are the most critical and abun-
dant substance of the dermal ECM. Features of photoaged
skin include the accumulation of abnormal elastin fibers
and GAGs, as well as collagen damage and reduction [58].
UVR-induced ROS stimulates the matrix-degenerating
metalloproteases (MMPs) synthesis [42] that can induce
the degradation of ECM. Alternatively, ROS can damage
ECM indirectly by the oxidation products of DNA, lipid,
and protein. Subsequently, several intracellular kinases
such as mitogen-activated protein kinase (MAPK) and
extracellular regulated protein kinases (ERK) will become
activated . Ultimately, transcription factor complexes acti-
vator protein 1 (AP-1) and nuclear factor-kappaB (NF-
κB) will be produced and activate MMP transcription.
Therefore, ROS can increase collagen degradation and
aberrant elastin accumulation by altering gene expres-
sion pathways. Besides, heme oxygenase-1 (HO-1) can be
induced by activated AP-1 and NF-κB [59]. It can ele-
vate free irons concentration and promote further ROS
production through Fenton reaction [60]. Activated NF-
κB in fibroblasts can induce the transcription of proin-
flammatory cytokines interleukin (IL)-1, IL-6, vascular

endothelial growth factor (VEGF), and tumor necrosis
factor-α (TNF-α) [28], thus stimulating the inflamma-
tory cells infiltration. These qualitative and quantitative
alternations of ECM eventually lead to decreased tensile
strength and recoil capacity, as well as wrinkle forma-
tion, dryness, wound healing damage, and an increase in
brittleness. [61].

ADSCsmechanisms in photoaging
Oxidative stress
Oxidative stress is a major cause of photoaging [62]. It
is defined as the imbalance between ROS and antioxi-
dants. Some studies support the protective function of
ADSCs and secretome of ADSCs during oxidative injury
(Fig. 2). For example, HGF (hepatocyte growth factor)
is reported to protect the retinal pigment epithelium
[63], the heart [64], and the liver [65] against oxidative
stress. VEGF leads to great decrease of renal ischemia-
reperfusion (I/R)-induced oxidative stress in mice [66].
IL-6 attenuates oxidative stress by activating the down-
stream signal transducer and activator of transcription
3 (STAT3), nuclear factor erythroid 2-related factor 2
(Nrf2)-antioxidant pathway and upregulating manganese
superoxide dismutase (Mn-SOD) [67, 68]. However, TNF-
α can induce ROS generation in retinal pigment epithelial
[69]. It may be induced by proinflammatory effect of TNF-
α. In addition, it is reported that conditioned medium
fromADSCs (ADSC-CM) and exosome of ADSCs(ADSC-
Exo) protect alveolar epithelial cells [70], keratinocytes
[71], human dermal fibroblasts (HDF)s [71–73], dermal

Fig. 2 Schematic representation of the effects of ADSCs on photoaging
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papilla cells [19] against oxidative stress. Specifically, the
antioxidant capacity of the ADSC-CM is 1.8 times higher
than that of the standard medium [74]. Mitochondrial-
derived reactive oxygen species (mtROS) is associated
with inflammasome activation [75]. Elevated ROS levels
will lead to increase in mitochondrial lipid peroxidation.
It is reported that ADSCs are able to suppressing mtROS
levels in stressed recipient cells [76]. However, glyco-
protein A repetitions predominant (GARP) silencing in
ADSCs increased their activation of transforming growth
factor-β (TGF-β) that augmented the levels of mtROS
[30].
ADSCs fight against oxidative stress through higher

antioxidant enzymes expression such as GPx [72], SOD
[72, 77], catalase [78]. They also upregulate antioxidant
response element such as phase II gene HO-1 [71] and
suppress the production of myeloperoxidase (MPO) [79]
that can induce lipid peroxidation, reactive chlorinating
and brominating species, NADPH oxidase (NOX)1 and 4
[80], and malondialdehyde (MDA), the most commonly
used marker for lipid peroxidation [77, 81, 82]. ADSCs
depend on Nrf2 to downregulate NOX1 and NOX4 and
upregulate HO-1 [80]. In wound beds, overexpressed Nrf2
of ADSC-Exo promoted granulation tissue formation,
angiogenesis, increased the expression of growth factor,
and decreased proteins related to inflammation and oxi-
dation [31]. However, the specific mechanism of how
ADSCs react on these enzymes and the precise pathway is
yet to be determined.

DNA damage
One of the major types of oxidative DNA dam-
age products induced by free radicals is 8-hydrox-2′-
deoxyguanosine (8-OHdG), and ADSCs can significantly
suppress the 8-OHdG levels in the rat model [83]. Attenu-
ated level of oxidative stress definitely contribute to reduc-
ing DNA damage. Besides, ADSCs can downregulate the
expression of phosphorylated histone family 2A variant
(γH2AX) protein, which responses to DNA double strand
breaks in irradiated cells [84]. Besides, ADSCs with over-
expressed hypoxia-inducible factor (HIF)1α can decrease
oxidative stress and subsequent DNA damage efficiently
[32]. Reduced DNA damage level can ameliorate oxidative
stress in turn and exert protective capacity.
It is generally accepted that UV-induced apoptosis is

generated by UV-mediated DNA damage [85]. There-
fore, decrease of DNA damage has an important impact
on apoptosis inhibition. Studies showed that ADSC-CM
inhibited the apoptotic cell death induced by UVB and
it is illustrated by the reduced sub-G1 phase of HDF
[86]. Furthermore, ADSCs inhibit apoptosis by transport-
ing and regulating proteins. For example, ADSCs-Exo not
only remarkably reduced hypoxia and serum deprivation
(H/SD)-induced apoptosis in murine long bone osteocyte

(MLO)-Y4 cells [87], but also promoted cell proliferation
and migration of human keratinocytes (HaCaT) cells, and
decreased cell apoptosis of HaCaT cells, both via upregu-
lating the radio of B cell lymphoma-2 (Bcl-2)/Bcl-2 asso-
ciated X(Bax) [88]. In a skin flap transplantation model,
H2O2-treated ADSC-Exo group had fewer apoptosis cells,
resulting in higher mean percentage of skin flap survival
area after I/R injury [33]. In the mean time, apoptotic
biomarkers (Bax/caspase-3/poly ADP-ribose polymerase)
were significantly reduced through the combination of
ADSC-Exo and ADSCs in another acute kidney I/R injury
model [89]. In addition, hypoxia-treated ADSCs down-
regulated the expression of pro-apoptotic gene such as
CASP9, BAX, BID, and BLK and upregulated the expres-
sion of anti-apoptotic gene BCL-2 in hepatocytes [90].
Last but not the least, it is reported that ADSCs can
convert necrotic or late apoptotic cells to early apoptotic
cells in photoaged fibroblasts depending on paracrine
capability [22].
Senescence is a state of stable cell growth arrest in the

G1-phase [91]. The major inducer of the cell cycle arrest
is p21, which is downregulated by ADSCs in fibroblasts
[34]. ADSC-CM treatment decreased cellular senescence
induced by UVB and SA-β-Gal in HDFs [92], which can
be explained by the reduced oxidative stress and attenu-
ated DNA damage based on the oxidative stress theory.
Besides, overexpression of VEGF in ADSCs promoted
the function of ADSCs on downregulating SA-β-Gal and
inhibiting senescence in fibroblasts injured by UVR [34].
It is reported that p53 were significantly downregulated
in hematopoietic stem cells (HSCs) cultured on ADSCs,
which may contribute to the capacity of ADSCs for
inhibiting apoptosis and senescence [93].

Extracellular matrix
Collagen is a primary element in ECM. When exposed
to UVR, it will be degraded mostly because of increased
activity of MMPs caused by ROS production [71]. The
molecular interaction between fibroblasts and the ECM is
obstructed due to the decrease of collagen, which even-
tually results in the damage of fibroblast function and
further collagen decrease [94]. It is reported that ADSC-
Exo can promote the migration ability of HDFs irradiated
by UVB [95], suppress the overexpression of MMP-1
[95, 96], MMP-2 [95, 97], MMP-3 [95, 96], MMP-9 [92,
95] and MMP-13 [97] caused by UVB. Moreover, it can
increase collagen I, II, III, and V and elastin expression [92,
95]. Inhibitor of metalloproteinase (TIMP)-1 and TGF-
β1 that are critical factors contributing to suppressing
MMP and synthesizing ECM were upregulated in extra-
cellular vesicles from ADSCs (ADSC-EV)-treated HDFs
after UVB exposure [95]. Injection of ADSCs in nudemice
promoted collagen density, fibroblast number, and skin
thickness [35]. Besides, procollagen type I protein that
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accounts for the synthesis of dermal collagen increased
noticeably [98].
Elastic fibers accumulate abnormally in sun-aged skin.

Subcutaneous injection of ADSCs significantly decreased
elastosis and resulted in new oxytalan elastic fiber pro-
duction in the papillary dermis. It also promoted the
tridimensional architecture in the reticular dermis and a
richer microvascular bed structure [99], concomitant with
activation of cathepsin K and matrix MMP 12 [100].
Hyaluronic acid (HA) is one type of GAGs, which

decreases in photoaged skin [101]. HA composes pro-
teoglycan (PG) aggregates that are large compound of
HA and PGs bound to HA. Their combination with
other matrix proteins, like collagen networks, leads to
the formation of supermolecular structures and increases
the hardness of the tissue [102]. HA production and
degradation modulation are important for ECM home-
ostasis maintenance. ADSCs produce TGF-β1, basic
fibroblast growth factor (bFGF), epidermal growth fac-
tor (EGF), and platelet-derived growth factor (PDGF)-
BB, which promote the expression of HA synthase in
fibroblast [103].
ECM is secreted mainly by fibroblasts. As already men-

tioned, ADSC-CM reduced cellular senescence and apop-
tosis in irradiated HDFs. And it is demonstrated that
ADSC-CM plays a protective role in preventing HDFs
from extrinsic aging damages. Among them, PDGF-AA
may promote the function of ADSC-CM with some other
elements [92]. Moreover, in in vitro and in vivo experi-
ments, theWnt/β-catenin signaling pathway can promote
the activation of skin fibroblasts through the transplanta-
tion of ADSCs. The combination of ADSCs and fractional
CO2 laser can further strengthen the dermal fibroblast
activity [21]. ADSC-Exos can be absorbed by fibroblasts
and enhance their ability to proliferate and migrate, as
well as promote the deposition of collagen type I and III
through the PI3K/Akt signaling pathway [104]. ADSC-
CM is currently under clinical study to treat skin aging due
to its ability to promote fibroblast migration and collagen
synthesis [105].
It is also found that ADSC-CM can suppress the acti-

vation of the MAPK [71] and ERK1 [73] signaling path-
way induced by UVB, promote TGF-β , suppress IL-6,
and inhibit activation of AP-1 and NF-κB [71] signal-
ing molecules induced by UVB. They all showed that in
the early UVB responsive stage, ADSC-CM can regulate
relative molecules to exert its function.
Some research suggested that UVB causes photoag-

ing by changing skin stem cell niches that are mainly
composed of ECM and other regulatory factors [106].
Transferred ADSCs can influence the BMP signaling path-
way and differentiate into skin stem cells to remodel the
niches, as a supplement to the paracrinemechanism of the
protective function of ADSCs.

Inflammatory response
Attenuated oxidative stress is concomitant with reduced
inflammation because oxidative stress occurs after UVR
results in glucocorticoid resistance and the subsequent
progress of skin inflammation [107]. What is more, accu-
mulation of senescent cells causes the increase of proin-
flammatory molecules such as IL-6, IL-8, and TNF-α that
are closely related to chronic inflammation [24]. ADSC
can reduce senescent cells and may alleviate the inflam-
matory responses in this way.
Besides, ADSCs can mediate inflammatory response

directly. ADSCs are able to ameliorate inflammatory and
immune responses [108], which is illustrated in sev-
eral types of cells, such as natural killer T cells [109],
regulatory T cells [110], T cells [111], and dendritic
cells [112]. In the injured area, ADSCs were aggregated
and relocate by increasing CXCR-4 expression. What
is more, in this way, the inflammatory phenotype of
immune cells will be transferred into anti-inflammatory
cells [24]. In vitro, ADSC-Exo had an inhibitory effect
on the differentiation of CD4+ or CD8+ T cells
toward effector or memory cell phenotypes, regulated
by anti-CD3/CD2/ CD28 stimulation[113]. Moreover,
ADSCs increased macrophage recruitment and promoted
macrophage polarization toward anti-inflammatory M2
phenotypes by secreting TGF-β , IL-1β , and IL-6 [114,
115]. In activated macrophages, the generation of pro-
inflammatory cytokines like TNF-α and IL-12 and the
trend of apoptosis can be suppressed by ADSCs [116].
What is more, regulatory T cells’ differentiation and pro-
liferation are suppressed by ADSCs while regulatory T
cells’ are enhanced. It seems that the anti-inflammatory
function of ADSCs is associated with the phenotypic
differentiation of T cells [116].
In fact, ADSC secretome includes various proinflam-

matory and anti-inflammatory components including
growth differentiation factor (GDF)11, TGF-β , bFGF,
VEGF, toll-like receptor (TLR)2, TLR4, IL-10, and MMP
[117–122]. The final outcome is determined by the bal-
ance of these anti-inflammatory and pro-inflammatory
molecules. In pig models with both I/R and hemihep-
atectomy, ADSCs transplantation successfully improved
high concentrations of pro-inflammatory cytokines such
as IL-1β , IL-6, and TNF-α induced histopathological
injury [123]. Moreover, ADSCs promoted the expres-
sion of IL-10, regenerative molecules like HGF, Cyclin
D1, proliferatory molecules such as VEGF, angiotensin
(ANG)-1, and ANG-2 [123]. Recently, microRNA (miR)-
146a-transfected ADSCs and the secretome containing
abundant miR greatly demonstrated their angiogenic and
anti-inflammatory abilities [36].
Furthermore, it is reported that ADSCs can modulate

the UVB-induced inflammatory signaling pathways. UVB
improved the inflammatory molecules expression such as
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phospho-NF-κB p65, nod-like receptor protein (Nlrp)3,
vascular cell adhesion molecule (VCAM)-1, COX2, and
TNF-α, while ADSCs transplantation repressed the over-
expression of these genes [97].
Inflammation and apoptosis are considered to be the

main features of skin photoaging [124, 125], while ADSCs
can suppress this inflammatory progress. These findings
about ADSCs could provide effective strategies to deal
with photoaging.

Potential applications of ADSCs and ADSC
secretome in photoaging and photocarcinogenesis
Recent clinical research suggested that ADSCs can be
applied to ameliorate multiple skin conditions, because
they can stimulate injured skin to regenerate [126]. The
efficacy of ADSCs under multiple skin aging conditions
have been presented and confirmed and are significant
in potential therapeutic applications development, such
as anti-wrinkling, dermal thickness improvement, skin
whitening, UV-induced skin injury regulation, and tumor
applications. A randomized controlled trial study showed
that protein extracts of ADSC-CM via microneedles pre-
sented a critical improvement for melanin levels, bright-
ness, skin gloss, roughness, elasticity, and wrinkles with-
out the unfavorable side of the skin. Besides, more than
70% of the participants of the participants said that in
the test surface, wrinkles, firmness, elasticity, hydration,
whitening, and brilliance were noticeably improved [127].
Next, the therapeutic potential as well as the current

limitations of ADSCs in photoaging and photocarcino-
genesis will be described in multiple aspects. The pre-
clinical studies of ADSCs and their secretome in photoag-
ing and photocarcinogenesis are listed in Table 2.

Anti-wrinkling and skin thickness improvement
Although the mechanism of wrinkle formation is not well
understood, there is general atrophy of the ECM, fewer
fibroblasts, and reduced synthetic ability [131, 132]. The
generation of wrinkles is modulated by genetic factors, but
the amount of exposure to UVR is also a significant com-
ponent. UVR increases the degradation of collagen and
elastic fibers, thereby leading to photoaging through the
wrinkle formation and the skin elasticity loss [133].
Photoaging is a complicated process that is similar to

dermal wounds pathologically [26]. Dermal fibroblasts
communicate with keratinocytes, adipose cells, and mast
cells, exerting essential functions in these progress. Mean-
while, they also synthesize ECM proteins, glycoproteins,
adhesive molecules, and various cytokines [134]. Der-
mal fibroblasts play an important role in the fibroblast-
keratinocyte-endothelium complex by providing these
factors and promoting interactions between cells, which
promotes wound repair as well as keeps the dermal
integrity and skin youth. Normal applications dealing with

dermal aging like laser and topical regimens usually pro-
mote the synthesis of ECM through activation of fibrob-
last. It was reported that ADSCs activated HDF through
the generation of various growth factors which promote
the proliferation and relocation of HDF and regulate the
secretion of collagen in HDF [86]. It was also reported
that ADSCs have anti-wrinkle functions in animal models
based on the capacity of activating fibroblast. For exam-
ple, ADSCs augmented skin thickness and stimulated the
proliferation of dermal fibroblast on the photoaged skin
by the Wnt/β-catenin signaling pathway in both vitro
and vivo experiment [21]. In an experimental study using
mice, treated with ADSC-CM, UVB-induced wrinkles in
nude mice were noticeably ameliorated, which is mainly
regulated by the decrease of apoptosis induced by UVB
and increase of collagen synthesis in HDF [86]. Collagen
synthesis by fibroblasts is promoted by multiple factors
including insulin-like growth factor (IGF), EGF, IL-1, and
TNF-α, but TGF-β seems to be the most important stim-
ulator in vivo [135, 136].
In a comparative study, both ADSC group and fibrob-

last group showed decreased wrinkle area. Compared
with ADSCs, fibroblasts promoted more collagen expres-
sion, but they also augmented the expression of MMPs,
while ADSCs reduced MMP expression [20]. ADSCs also
stimulated higher collagen density and had high levels of
tropoelastin and fibrillin-1 than fibroblast group, which
indicates the superior regeneration capacity of ADSC.
Besides, in an athymic mouse model of photoaging,

injection of ADSCs combined with HA gel ablated pho-
toinduced skin wrinkles [37]. In a porcine acute wound
model, ADSCs seeded onto collagen scaffolds increased
dermal thickness and increased ECM in comparison to
scaffold only and unprocessed porcine skin [38]. More-
over, the wrinkles in the areas injected with the stro-
mal vascular fraction (SVF)/ADSC-concentrated nanofats
were significantly attenuated and photoaged condition of
hairless mice skin was greatly improved [35]. In addition,
ADSCs and fat graft have a wrinkle-reducing effect in
aged mice by synergistically affecting collagen synthesis
and neovascularization [39]. Combination of ADSCs with
other material or graft offers the skin a consistent and sta-
ble volume fill, which tends to augment skin thickness and
reduce wrinkles more significantly.
What is more, low-level laser (LLL) preconditioning

enhanced ADSCs proliferation and increased their growth
factors generation and the dermal thickness of photoaged
mouse skin[40], which indicated LLL might improve the
clinical therapeutic potential of ADSCs. Nevertheless, the
key point should be highly considered is that therapies
based on stem cells still have some concerns related to
safety and immune rejection [137]. Several days after
transplantation, stem cells are likely to undergo apopto-
sis [138]. However, their secretome contains a variety of
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Table 2 Pre-clinical studies of ADSCs and their secretome in photoaging and photocarcinogenesis

Function In vitro or in vivo Source Effect
cell

Findings Reference

Anti-wrinkling In vitro ADSC HDF Stimulate collagen expression with higher
tropoelastin and fibrillin-1 assessments,
decrease MMP expression

[20]

Anti-wrinkling In vitro and in
vivo

ADSC and ADSC-
CM

HDF Augment dermal thickness and stimulate the
proliferation of HDF by the Wnt/β-catenin
signaling pathway

[21]

Anti-wrinkling In vitro ADSC-CM HDF and
HaCaT

Increase procollagen type I synthesis
inhibitors IL-6, promote collagen synthesis
enhancer TGF-β and inhibit UVB-induced
activation of AP-1 and NF-κB

[71]

Anti-wrinkling In vitro and in
vivo

ADSC and ADSC-
CM

HDF Reduce wrinkle, decrease the UVB-induced
apoptotic cell death and MMP1 expression,
increase collagen I

[86]

Anti-wrinkling In vitro ADSC-EV HDF Suppress the overexpression of MMP-1, -2, -3
and -9 and enhance the expression of TIMP-
1, TGF-β1, collagen types I, II, III and V and
elastin

[95]

Anti-wrinkling In vivo ADSC HDF Stimulate collagen synthesis in HDF and
increase angiogenesis

[98]

Whitening In vivo ADSC Melanocyte Inhibit melanin formation [128]

Whitening In vitro ADSC-CM Melanoma
B16 cell

Inhibit melanin synthesis by downregulat-
ing tyrosinase and TRP1, mainly mediated by
TGF-β1

[129]

Whitening In vivo ADSC Melanocyte Attenuate tanning following UVB-irradiation
by suppressing tyrosinase activity

[130]

Wound healing In vivo ADSC HDF Inhibit senescence and recover from the
injury caused by UV by downregulating SA-
β-Gal, p21 and MMP-1

[34]

Wound healing In vitro ADSC-Exo HDF Enhance proliferation and migration of HDF,
as well as promote collagen type I and III
deposition via the PI3K/Akt signaling path-
way

[104]

Inhibit skin can-
cer

In vivo ADSC Total cell
of the
skin

Restore skin barrier by ameliorating the
downregulation of α6 integrin, CD34, and
collagen I by UVB, reducing the overexpres-
sion of COX2 and TNF-α induced by UVB.

[97]

Inhibit skin can-
cer

In vitro and in
vivo

ADSC-CM Melanoma
B16 cell

Decrease the proliferation and migration
ability of B16 melanoma cells and reduce
volume of the tumor mass

[129]

Systematic
improvement

In vivo Protein extracts
of ADSC-CM

Total cell
of the
skin

Improve melanin levels, brightness, skin
gloss, roughness, elasticity, and wrinkles

[127]

bioactive factors, such as cytokines, growth factors, and
chemokines. They can function as paracrine tools and are
more potential than cell transplantation. Therefore, more
cell-free studies associated with ADSC-CM or ADSC-Exo
can be done to fill the void.

Skin whitening
Most of UVR stress can be defended by melanin pig-
mentation, but threatening health and esthetic problems
will be induced by abnormal pigmentation like melasma,
freckles, and senile lentigines [133]. One of the most com-
mon skin disorders is hyperpigmentation that affects all

ethnic groups, mainly caused by UV exposure and skin
inflammation [139]. Upon exposure of the skin to UVR,
melanogenesis is facilitated by the stimulation of tyrosi-
nase. Tyrosinase is a rate-limiting enzyme in the melanin
biosynthesis cascade, which catalyzes the hydroxylation
of tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA)
and the subsequent oxidation of L-DOPA to dopaquinone
[140]. In the absence of thiols, dopaquinone can undergo
cyclization into dopachrome and turn to dihydroxyindole-
2-carboxylic acid-melanin. By the activation of tyrosinase-
related proteins 1 and 2 (TYRP1, TYRP2), the dark brown-
black insoluble type of melanin finally forms [141].
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Conventional methods dealing with hyperpigmenta-
tion such as acid peels and topically used hydroquinone
creams can cause acute contact dermatitis or skin pigment
spots. Besides, chemical peels do not work on deep wrin-
kles or pigmentations [142]. However, ADSCs are more
potential to treat aged skin by stimulating skin regenera-
tion ability and inhibiting melanin, as well as overcoming
current clinical limitations. It is reported that ADSCs can
exert as whitening agents via a paracrine function or their
own presence [128, 129]. For example, ADSCs can secrete
various factors, mainly TGF-β1, to exert their whiten-
ing effect in vitro. The tyrosinase and TRP1 expression
are downregulated by TGF-β1 in B16 melanoma cells
[129]. However, the accurate mechanism and molecu-
lar pathway about how TGF-β1 regulates melanin syn-
thesis are still not quite explicit. Other cytokines can
also suppress pigmentation by interacting with tyrosinase.
Nevertheless, the concentrations of these components
in ADSC-CM are far from reaching the half-maximal
inhibitory concentration (IC50) value of inhibition [72,
129]. Moreover, the skin tanning induced by UVB in mice
can be ameliorated by subcutaneous ADSCs injection,
which is effected by suppression of tyrosinase activity
and DOPA-positive melanocytes [130]. What is more, it
is reported that antioxidants suppress the formation of
melanin and the transfer of melanosome as well as alter
the melanin type [129, 143]. And it has already been
demonstrated above that ADSC-CM has great antiox-
idant capacity. In a word, ADSCs could exert whiten-
ing functions as antioxidants and TGF-β1 also plays an
important role.

UV-induced skin injury regulation
Overexposure to UVR leads to acute skin injury that trig-
gers the relocating of the activated immune cells into the
injured skin site [144]. It forms a localized inflamma-
tory environment and further exacerbates inflammation,
resulting in delayed wound healing [145].What is more, in
C57BL/6 mice, UVR can deteriorate skin wound healing
[146]. The cytokine and growth factor secreted by ADSCs
function importantly in all three phases of wound healing.
The first phase engages TGF-β , TNF-α, PDGF, IL-1, and
IL-6, which balance the progress of inflammation [147]. In
the second stage, FGFs, TGF-β , PDGF, HGF, IGF-1, and
EGF, together with IL6, IL8, and TNF-α, play a critical
role [148–154]. In the third phase, TGF-β , TNF-α, EGF,
and IL-1 contribute to remodeling the injured site. [155–
160]. Besides, ADSCs are able to migrate to injured sites
effectively and boost adjacent cell to regenerate. More-
over, ADSCs have been shown to differentiate into lots
of skin cells such as keratinocytes and dermal fibroblasts
(DF) [161–163].
In a UV-injured mice model, skin appearance of ADSCs

group was noticeably improved with less wrinkles, pig-

mentation, or erythema and the skin recovered from the
injury caused by UVR better [34]. As we all know, VEGF
exerts angiogenesis function by interacting with vascular
endothelial cells and promoting blood vessels prolifera-
tion. Overexpression of VEGF in ADSCs further allowed
the skin to resist photoaging. The VEGF group almost
recovered from the UVR-induced injury and their skin
conditions looked like those in the negative control group
[34].
There were already plenty of studies of ADSCs in wound

healing applications [164, 165], but only a few reports on
the UV-induced skin injury. Therefore, more studies could
be done to investigate the potential application of ADSC
in UV-induced skin injury.

Skin cancer inhibition
Photoaging and skin cancer are triggered mainly by UVR
from chronic sun exposure. And they share lots of mutual
molecular and histological changes. For instance, muta-
tion in p53 gene, an essential factor in photoaging model,
has also been recognized as a significant biomarker in
skin cancer induced by UVR [166] and been found in dif-
ferent skin cancers, especially squamous cell carcinomas
[167] and basal cell carcinoma [168]. Besides, ROS con-
tributes to the progress of skin cancer, while its exact role
in skin cancer has not been thoroughly elucidated [169].
Moreover, inflammatory responses induced by photoag-
ing could be caused by photocarcinogenesis and degra-
dation in ECM could be responsible for tumor dissem-
ination [170], while ADSCs can ameliorate the inflam-
matory response and inhibit the degradation in ECM.
These results might offer us potential methods to inhibit
photoaging and photocarcinogenesis.
Multiple studies are interested in the interaction of

ADSCs and the oncogenic process. Indeed, mesenchymal
stem cells (MSCs) can regulate cancer indirectly or exert
a direct function by transforming malignantly [171]. Con-
tradictory results have been presented that ADSCs can
exert pro-tumor or anti-tumor function, both in vitro and
in vivo. For example, in a mouse model of xenotransplan-
tation of human breast cancer, the study presented that
ADSCs injected into a tumor can promote tumor growth.
However, when injected around the tumor, ADSCs inhib-
ited tumor growth, suggesting that distinct influences the
effect of ADSCs in different tumor microenvironments
[172]. A study in vitro showed that ADSC-EV promoted
Wnt/β-catenin signaling to facilitate MCF7 human breast
carcinoma cell proliferating and migrating [172], although
effects of angiogenesis were not assessed. Another in vitro
study illustrated that ADSCs-CM can slow down liver
cancer cells growth through suppressing cell proliferation
and increasing cell apoptosis, as well as inhibiting cell
motility, adhesive ability, migration, and invasion [173].
Besides, it is also reported that human glioblastoma can-
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cer stem cell subpopulations are not affected by ADSC-
CM [174]. Therefore, before drawing conclusions, further
detailed research in this area is needed.
As for skin cancer, a study illustrated that ADSC-

CM greatly suppressed the migration capacity of B16
melanoma cells and reduced the volume of the tumor
mass [175]. ADSCs can restore skin barrier by amelio-
rating the downregulation of α6 integrin, CD34, and col-
lagen I by UVB, reducing the overexpression of COX2
and TNF-α induced by UVB [97]. ADSCs engineered to
express interferon (IFN)-β and combined with cisplatin
can migrate to the tumor sites and inhibit the growth
of melanoma more effectively, as well as led to extended
survival time. It suggested that ADSC can be used as
a powerful cell-based delivery vehicle to release thera-
peutic drugs to tumor lesions [41]. Besides, it is already
illustrated above that ADSCs can suppress photoaging-
and photocarcinogenesis-related inflammatory responses
and ECM degradation [97]. Collectively, ADSCs and their
secretome are quite potential as a therapeutic anti-skin
cancer medicine or a delivery vehicle. However, more
basic research and clinical trial must be conducted to find
out molecular mechanism details.

Conclusion and perspective
Photoaging is a complex process triggered mainly by UVR
from chronic sun exposure. This leads to DNA dam-
age and ROS production, which initiates an inflammatory
response altering cell structure and function. The harm-
ful effects of oxidative stress exert through a variety of
mechanisms, which involve changes in proteins and lipids,
induction of inflammation, immune suppression, DNA
damage, and activation of signal transduction pathways
that affect gene transcription, cell cycle, and proliferation.
And it finally leads to cell death, apoptosis and senes-
cence, degradation of dermal collagen, and degeneration
of elastic fibers as well as chronic inflammation and skin
cancer.
In regard to photoaging, the treating strategies aim to

ensure patient satisfaction in fields of esthetic appear-
ance and functionality. ADSCs can reduce oxidative stress,
inhibit cell apoptosis and senescence, improve ECM syn-
thesis and skin regeneration, and regulate the inflamma-
tion progress. Besides, studies have demonstrated that
ADSCs may have multiple clinical therapeutic applica-
tions, such as tissue regeneration, anti-wrinkle, tumors,
and depigmentation. ADSCs are thought to be “immuno-
privileged” and reliable in culturing for a long time
[176], thereby exerting an outstanding advantage in der-
matological field. In conclusion, these promising conse-
quences showed that ADSCs might be potential cosmo-
therapeutic tools addressing photoaging problem.
However, there aremany problems with the applications

of ADSC in dermatology, such as lack of details on how

ADSC affects keratinocytes, fibroblasts, and endothe-
lial cells or acts as a carrier for the secretion of solu-
ble factors. [1]. Additionally, systemic and local delivery
may have effects in multiple cell types simultaneously,
sometimes with opposing outcomes. Thus, possible side
effects should be taken into account and the safe doses
should be determined personally. Moreover, the applica-
tion of ADSCs could be impaired by some limitations. It
is reported that the formation of tumor can be induced
by transportation of MSCs into normal tissues [177].
ADSC-CM was especially known for high level of factors
involved in cancer progression and may have unexpected
side effects. Recent studies have also demonstrated that
ADSCs after transplantation do not survive for a very
long time. Besides, Pap cervical smear used for obtaining
human uterine cervical stem cells (hUCESCs) is less inva-
sive and less painful than liposuction used for obtaining
ADSCs [178].
In terms of manufacturing, storage, handling, and safety,

secretome-based approaches using conditioned medium
or exosomes may bring huge potential benefits than liv-
ing cells [178]. We can expect that cell-free secretomes
rather than ADSCs are more potential in treatment of skin
aging. What is more, inducing secretory modifications in
ADSCs are promising to overcome the current limitations
and enhance the anti-photoaging capacity.
Further study about the molecular details regarding the

involvement of ADSCs in photoaging applications need to
be carried out in order to increase our understanding and
open the way to therapeutic approaches. Besides, in order
to establish the optimal, durable, and safe strategy for
ADSCs and ADSC secretome in the treatment of patients
with symptoms of photoaging and aging, long-term and
extensive in vivo studies are absolutely necessary.
Availability for data andmaterials
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